1、Zhang Y T, Zhang S, Wang P(通讯作者). Growth induced buckling of morphoelastic rod in viscous medium. Chin. Phys. B, 2020,29(5): 054501 2、Wang P. Conformal invariance and conserved quantities of mechanical system with unilateral constraints. Communications in Nonlinear Science and Numerical Simulation. 2018, 59:463-471 3、Wang P, Feng Hui Rong,Lou Zhi Mei,Conformal Invariance and Conserved Quantities for Lagrange Equation of Thin Elastic Rod,Acta Physica Polonica A, 2017,131(2): 283-287. 4、王鹏,薛纭,楼智美. 黏性流体中超细长弹性杆的动力学不稳定性. 物理学报,2017,66(9):094501-8. 5、Wang P,Xue Y. Conformal invariance of Mei symmetry and conserved quantities of Lagrange equation of thin elastic rod,Nonliear Dynamics,2016,83(4):1815-1822. 6、Wang P, Xue Y, Liu Y L. Noether symmetry and conserved quantities of the analytical dynamics of a Cosserat thin elastic rod. Chin. Phys. B 2013, 22(10) 104503 7、Wang P. Perturbation to symmetry and adiabatic invariants of discrete nonholonomicnonconservative mechanical system. Nonlinear Dyn., 2012, 68 (1-2 ): 53-62. 8、Wang P, Xue Y, Liu Y L. Mei symmetry and conserved quantities in Kirchhoff thin elastic rod statics. Chin. Phys. B 2012, 21(7): 70203-070203. 9、Wang P, Zhu H J. Perturbation to symmetry and adiabatic invariants of general discrete holonomic dynamical systems. ActaPhy. Pol. A 2011, 119 (03): 298-303. 10、Wang P. Perturbation to Noether symmetry and Noether adiabatic invariants of discrete mechanico-electrical systems. Chin. Phys. Lett. 2011, 28(04): 040203-4. 11、Wang P, Fang J H, Wang X M. A generalized Mei conserved quantities and Mei symmetry for Birkhoff systems.Chin. Phys. B 2009, 18(04): 1312-1315. 12、Wang P, Fang J H, Wang X M. Discussion on perturbation to WNS and adiabatic invariants for Lagrange systems. Chin. Phys. Lett. 2009, 26(03): 034501-4. 13、Wang P, Fang J H, Ding N. Perturbation to Lie symmetry and Hojman exact and adiabatic invariants of generalized Raitzin canonical equation of motion. Commun.Theor.Phys. 2007, 48(04): 615-618. SCI收录 14、Wang P, Fang J H, Ding N. Two types of new conserved quantities and Mei symmetry of mechanical systems in phase space. Commun. Theor. Phys. 2007, 48(6): 993-995. 15、Wang P, Fang J H, Ding N. Hojman exact invariants and adiabatic invariants of Hamilton system, Commun. Theor. Phys. 2007, 48(06): 996-998. 16、Wang P, Fang J H, Ding N, Zhang P Y. A unified symmetry of nonholonomic mechanical systems in phase space. Chin.Phys. 2006, 15(07): 1403-1406. 17、Wang P, Fang J H, Zhang P Y, Ding N. A unified symmetry of mechanical systems with variable mass in phase space. Commun.Theor.Phys. 2006, 46(3): 385-388. |